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Abstract 

Current image localisation approaches rely on the satellite-based Global Positioning 

System (GPS) with the receivers embedded within nearly every modern image-capture 

device but the design constraints for such portable devices and the signal reflection in 

urban areas leads to relatively low accuracy ratings. The purpose of this dissertation 

is to explore the use of Structure-From-Motion techniques for an alternative extensible 

image localisation solution within urban environments featuring popular landmarks by 

leveraging a small subset of accurate GPS tagged images, and the availability of 

untagged high-resolution imagery. Applications for such a system range from law 

enforcement, tracking members of known criminal groups to a more civilian application 

of automatically geotagging social media pictures. The proposed method is tested 

against the higher accuracy assisted GPS tagged images, experimental results show 

usable results, just under conventional GPS accuracy, possibly better with more 

sophisticated methods than were employed in this project. 



   

   
  5 

Contents  

1 Introduction 12 

2 Structure of the dissertation 15 

3 Background 17 

3.1 Overview 17 

3.2 Dataset Gathering 17 

3.2.1 Dataset qualities 17 

3.2.2 CBIR (Content-Based Image Retrieval) 19 

3.3 Feature Detection and Matching 20 

3.3.1 Scale Invariance 20 

3.3.2 Rotation Invariance 20 

3.3.3 Translation Invariance 20 

3.3.4 Lighting and Illumination Tolerance 21 

3.3.5 Illustration 21 

3.4 Reconstruction 22 

3.4.1 Photogrammetry 22 

3.4.2 Scale-Invariant Feature Transform (SIFT) 24 

3.4.3 Structure-From-Motion 24 

3.4.4 Complexity Problems 26 

3.4.5 OpenMVG 26 

3.5 Previous work 27 

3.6 Summary of previous work 28 

4 Methodology 29 

4.1 Aims 29 

4.2 Objectives 29 

4.3 Scope and Limitations 31 

4.4 Hardware 32 



   

   
  6 

4.5 Software 33 

4.6 Reconstructions 33 

4.6.1 Descriptions of each reconstruction 33 

4.6.2 Images for each reconstruction 34 

4.6.2.1 Stonehenge 35 

4.6.2.2 St Giles Cathedral 35 

4.6.2.3 Sagrada Familia 35 

4.6.2.4 Palace of Versailles 35 

4.6.2.5 Edinburgh Castle 36 

4.6.2.6 Cathédrale Notre-Dame de Paris 36 

4.6.2.7 Big Ben, London 36 

4.7 Approach 36 

4.8 Dataset and validation data acquisition 36 

4.8.1 Image acquisition and visual filtering 36 

4.8.2 Additional options 38 

4.8.3 Validating the validation dataset 39 

4.8.4 GPS tags sanity check 40 

4.8.5 Retrospective GPS validation 40 

4.8.6 Validating GPS by leveraging the relative model 40 

4.9 Reconstruction, model merging and localisation 42 

4.9.1 Preparation 42 

4.9.2 Model reconstruction 43 

4.9.3 Model geo-registration, localisation and merging 47 

4.10 Analysis 47 

4.10.1 Merged model to original localisation comparison 51 

4.10.2 Comparison of merged model to ground truth 52 

4.10.3 Case study 53 

4.10.4 Conclusion of analysis 54 



   

   
  7 

4.10.5 Difficulties 55 

5 Conclusion 56 

5.1 Strengths and weaknesses 56 

5.1.1 Strengths 56 

5.1.2 Weaknesses 57 

5.2 Further work 58 

6 References 60 

7 Appendices 64 

7.1 Appendix 1 Project Overview 64 

Initial Project Overview 64 

SOC10101 Honours Project (40 Credits) 64 

Title of Project: Non-deterministic approach to location tracking through 

landmark recognition 64 

Overview of Project Content and Milestones 64 

The Main Deliverable(s): 65 

The Target Audience for the Deliverable(s): 65 

The Work to be Undertaken: 65 

Additional Information / Knowledge Required: 66 

Information Sources that Provide a Context for the Project: 66 

The Importance of the Project: 66 

The Key Challenge(s) to be Overcome: 67 

7.2 Appendix 2 Second Formal Review Output 68 

7.3 Appendix 3 Diary Sheets (or other project management evidence) 71 

7.4 Appendix 4 Relevant code 72 

7.4.1 Download 72 

7.4.2 Conversion 73 

7.4.3 Visual checking 74 

7.4.4 Moving images 75 



   

   
  8 

7.4.5 GPS sanity check 76 

7.4.6 Geo-registration 77 

7.4.7 Feature extraction and matching 78 

7.4.8 Incremental reconstruction 79 

7.4.9 Localisation 80 

7.4.10 OpenMVG Merging 81 

 

 



   

   
  9 

List of Tables 

Table 1 Reconstructions ............................................................................................ 33 

Table 2 Georeferencing estimation using all GPS images. ....................................... 41 

Table 3 Georeferencing estimation using LMeds 3D similarity outlier filtering........... 41 

Table 4 Comparison of incremental and global reconstruction pipelines ................... 46 

Table 5 Merge model localisation changes ............................................................... 51 

Table 6 Merged to original position changes. ............................................................ 52 

Table 7 3D fitting error for St Giles Cathedral............................................................ 54 



   

   
  10 

List of Figures 

Figure 1 Visual feature invariances ........................................................................... 21 

Figure 2 Project Flowchart......................................................................................... 30 

Figure 3 Stonehenge reconstruction images ............................................................. 35 

Figure 4 St Giles Cathedral reconstruction images ................................................... 35 

Figure 5 Sagrada Familia reconstruction images ...................................................... 35 

Figure 6 Palace of Versailles reconstruction images ................................................. 35 

Figure 7 Edinburgh Castle reconstruction images ..................................................... 36 

Figure 8 Cathédrale Notre-Dame de Paris reconstruction images ............................ 36 

Figure 9 Big Ben reconstruction images .................................................................... 36 

Figure 10 Structure-From-Motion Incremental pipeline ............................................. 44 

Figure 11 Incremental Pipeline Results ..................................................................... 45 

Figure 12 Global Pipeline Results ............................................................................. 45 

Figure 13 Photographic comparison to pipeline results ............................................. 46 

Figure 14 Histograms of localisation accuracies ....................................................... 49 

Figure 15 Reconstruction localisation accuracy histogram ........................................ 50 

Figure 16 Image localisation position uncertainty due to model merge ..................... 53 

 

https://livenapierac-my.sharepoint.com/personal/40428623_live_napier_ac_uk/Documents/Dissertation_revision.docx#_Toc70699942


   

   
  11 

Acknowledgements 

First and foremost, I would like to thank my supervisor, Dr Sean McKeown, for his 

guidance and support throughout the course of the project, without who, this 

dissertation if not entire project would have likely would have fallen flat on its face.  

I would also like to acknowledge Dr Petra Leimich, the second marker for this project, 

for their contribution of providing valuable feedback that helped steer the later direction 

of my work. 

Finally, I would like to thank Google for their endless academic support and the Flying 

Spaghetti Monster for its moral guidance.   



   

   
  12 

1 Introduction 

Photogrammetry is the process of extracting useful information from images, namely 

information about physical objects contained within the images, used in conjunction 

with multiple images featuring the same object, one can determine the dimensions of 

an object with a great deal of accuracy. Combined with a technique called Structure-

From-Motion (SfM) allowed the reconstruction of accurate 3D models of the images’ 

subjects. Despite that and the increasing number of papers published on the subject, 

photogrammetry did not gain widespread adoption until the late 2000s, partly due to 

the required computational work and partly due to the expensive equipment required 

to obtain good digital imagery. 

Many years have passed since then, the expansion of computing necessitated ever 

larger amounts of cheaper computing power, the advent of the internet came with many 

image hosting websites, in fact, even in 2008, a search for the Notre Dame Cathedral 

returned over 15,000 images. Photogrammetry did not remain stagnant either, the 

techniques’ capabilities of modelling the world and their improving efficiency have led 

to photogrammetry being available to the unspecialised masses, and with it many 

ambitious projects, like that of Google Earth 3D buildings, and the easier creation of 

digital asset libraries for the entertainment industry. Additionally, the use of satellites, 

a project called the Global Positioning System (GPS) have enabled one to localise 

devices carrying the necessary functionality anywhere in the world. 

There are many reasons one might want to produce a high-quality 3D map of an 

environment, some examples might include automatic geotagging of social media 

images, robot navigation within a human-inaccessible environment and tracking the 

movement of a head mounted display for better virtual reality. Other, more 

cybersecurity-oriented reasons might be movement pattern tracking through following 

someone’s social media profile images, tracking the wealth of households by what 

make of car they have outside or within what hotel rooms their images happen to be 

localised. These applications can even be applied to develop better law enforcement 

techniques, for example, getting the location of crime suspects through their latest 

image social status update containing something as simple as a rather obstructed yet 

still statistically unique building. Yet another hypothetical extension could even be used 
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to cross-reference the places frequented by suspected members of criminal groups, 

the possibilities are simply immeasurable. 

Despite the improvement in mapping the world, and localisation capabilities for digital 

devices, adoption of localisation for the images taken by these devices is still proving 

incomplete, and if available, their accuracy being questionable. Earlier approaches 

have tried to tackle this problem by matching images to a database of other images 

containing GPS information and estimating the position between using at least two 

images as a guideline, leading to large computational requirements for the search as 

well as the need of a database containing accurate GPS imagery (Zhang & Kosecka, 

2006). 

The objective of this dissertation is to determine whether one can combine the 

increasing amount of publicly available data, cheap computing power, ideas of 

georeferenced 3D models from Google and new photogrammetric techniques to build 

a robust, extensible, and cheap solution for the localisation of arbitrary images 

containing recognisable structures, usually focusing on popular landmarks. This 

includes the collection of a usable photogrammetric dataset from crowdsourced, 

unstructured image hosting websites, aligning the reconstruction to the GPS datum 

and extracting the position of novel images from that reconstruction. Additionally, 

adding the capability to extend the reconstruction, using the additional localised 

imagery and by merging different reconstructions together on the same GPS datum. 

Secondary objectives are to determine the accuracy and effectiveness of this method, 

how many images, both normal and ones used for georeferencing are required for 

satisfying results, that is the alignment of the model into its true GPS coordinate 

system, if the 3D reconstructions can be merged, how that would affect the localisation 

accuracy as the size of the model increases and how the recovered positions from the 

localisation can be used to refine, and possibly extend, the reconstructed 3D model. 

In doing so, we derive the following research question; “Is it possible for higher 

accuracy GPS image locations to be obtained from a georeferenced 3D 

reconstruction than by using on-board mobile phone GPS chips?”.  

The benchmarks for this endeavour are the on-board phone GPS chips due to their 

widespread adoption in mobile devices, and the accuracy for said chips within urban 
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environments being around the neighbourhood of 20m. This due to the satellite signals 

required for triangulation being reflected by the features found in such environments 

(Merry & Bettinger, 2019). On the other hand, assisted GPS, the use of techniques 

such as cellular tower triangulation, additional algorithmic improvements in 

compensating for Doppler shift and higher accuracy GPS receivers yield order of 

magnitude higher accuracies, around the centimetres to one meter range (Pesyna, 

K.M., Jr, Heath, & Humphreys, 2014). The evaluation of the project will thus be in 

comparison to assisted GPS tagged images. 

The work is valuable to a number of disciplines, the main beneficiaries include but are 

not limited to; crime forensics, with emphasis on matching images to the location of the 

crime, massively increased quality of city maps due to being able to easily localise 

crowdsourced images, value in the entertainment industry by including the generated 

3D models in digital asset libraries, possibly for video games depicting historical or 

contemporary locations, and robotics, in helping an autonomous agent navigate 

through a city. Additionally, the geomorphological community can also benefit from this 

work, as they did from the initial advent of photogrammetry, for tracking the movement 

of buildings instead of landmasses (Micheletti, Chandler, & Lane, 2015). 

In the following section, there will be some information for understanding the processes 

described above, following that, the objectives of this project will be covered. Next, the 

methodology section will be used to describe the strategies undertaken to achieve 

these objectives. Finally, the conclusion, a section detailing an overview of the answer 

to the research question, a reflection on the conducted research, where the project fell 

short due to out-of-scope improvements that could have been made and 

recommendations for future work to be undertaken.  
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2 Structure of the dissertation 

The dissertation is organised as follows: 

- The Introduction provides a general overview of the scope of the problem, 

including the concepts of photogrammetry, with references to later sections 

where things are explained in more detail as a guideline to follow the work. It 

also provides the main scheme; dataset gathering, feature detection, feature 

matching with outlier management, reconstruction, model geographical 

alignment and extraction of information from the model. 

- The Structure of this Dissertation, to repeat, outlines the structure of this 

dissertation, that is how each section will be organised and what will be 

contained within it. 

- The Background will serve as a literature review and cover a relatively in-depth 

overview of the near or state-of-the-art of photogrammetry techniques for 

terrestrial close-range images as well as any specific techniques included in the 

project. This literature review will also present previous attempts at image-

based localisation and automated image dataset gathering. 

- The Methodology will be used to cover the scope and limitations, essentially, 

what the project is limited to because of any budget, computational or time 

constraints and how this might affect the project process and outputs. Then, it 

will continue with describing the work done for the completion of this project, 

justifying the choices, any experiments for those justifications, and will be laid 

out in a format like the introduction, that is, following; dataset gathering, feature 

detection, feature matching with outlier management, reconstruction, model 

geographical alignment and extraction of information from the model. 

- The Results section will be discussing how the project does in satisfying the 

aims and objectives, and any additional limitations encountered, and provide 

the results of any small experiments used to justify the choices for the direction 

of the project. It will also use the ground truth dataset to show the accuracy and 

precision of the inferred camera positions.  

- The Conclusions section will provide a concise list of what was achieved, 

expand on any possible improvements in future work and highlight the 

limitations of the current work. 
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- The References section will list all documents directly cited in the work, 

including paraphrasing. 

- The Appendices section will include all additional material required for 

submission.  
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3 Background 

3.1 Overview 

This section will largely be used to explore the current literature on the 3D 

reconstruction pipeline and will be relevant to understanding the work described in the 

methodology section. The work will be covered in layman’s terms and based on the 

following sections: 

- First, retrieval of an image dataset for 3D reconstruction, focused on large 

datasets like image-sharing websites, ensuring the images feature the same 

subject and have sufficient details for later stages. 

- Next, feature extraction which will cover what features are in relation to the 

computer vision field, the properties of features and why they are used for 3D 

reconstruction.  

- Then, the reconstruction processes, an outline of the different approaches, and 

the steps involved in deriving object geometry from images.  

3.2 Dataset Gathering 

3.2.1 Dataset qualities 

The photogrammetric dataset, composed of still images and optionally, videos, 

contributes most of the reconstruction quality despite the ever increasingly complex 

and efficient techniques of deriving geometry from images. This is because the time 

taken to process a dataset increases with the amount of data, further so with trying to 

process dataset outliers and further decreases or increases with its quality and type, 

for example, if the dataset only contains GPS labelled images, or even video frames 

that only match to a certain number of images going forwards or backwards, then the 

process can have a more constrained solution space. This is due to the algorithms 

involved taking computationally longer and more expensive with unknown variables, 

like camera focal length, to be estimated and continually refined, or each added image 

to be compared, in the worst-case scenario, against all other images in the dataset. 

Additionally, the resolution, content and “blurriness” of an image directly impacts the 

number of visual features that can be detected (discussed later). Another significant 

factor would be the elimination of outliers, the GPS data contained within an image can 
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be faulty which would add massive error to the georeferencing of the model, this means 

a good quality dataset is paramount to the success and quality of the project. 

There are a few ways to achieve such a dataset: 

- Filtering out blurry images using Laplacian variance. This is due to a highly 

focused image having much higher Laplacian variance, thus better-defined 

edges, it is additionally good for filtering out images where many features would 

not be detected later in the SfM pipeline since things like the sky do not feature 

much variance, and an image almost entirely containing the sky would not pass 

(Rosebrock, 2015). 

- The Fast Fourier Transform (FFT) function for finding improperly coloured 

images, like those that a drawing would be compared to a photograph, this is 

due to the sharp lines and colour changes being much higher “energy” and 

“frequency” to such a function while photographs would have more gradual 

changes and be comprised of smooth gradients. (Kanwal, Girdhar, Kaur, & 

Bhullar, 2019) 

- ELA (Error-Level Analysis) for detecting digital image manipulation in lossy 

compression image storage techniques like JPEGs, since an alteration, like 

adding in a structure, would be lit up under such a comparison, this is due to the 

JPEG being recompressed, the older (already compressed) image would once 

again be compressed, resulting in more artifacts compared to the newer digitally 

added feature (Paganini, 2013).  

- One last technique to do image manipulation detection would be to train a neural 

network, a convolutional neural network, which would derive a much higher 

dimensional function for doing just that, with accuracy of over 90%, additionally, 

trained model weights can also be acquired if one does not have the resources 

for training. That said, neural networks are outside the scope of the project and 

will not be used nor will they be discussed in detail. (Kim & Lee, 2017) 

- Extracting image features, for example, corners, and matching against other 

images’ features, the matching features would be used to estimate a 

transformation, like overlaying images on top of each other where they match, 

to see if the new image features’ estimated geometry support the original image 

spatial geometry, basically, if all the extracted features that are supposed to be 

in the same space, overlay, essentially, a geometric sanity check. This also 
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filters out outliers in the form of moving objects such as pedestrians, cars, 

airplanes etc. since they would not support the model. (Johannes Lutz 

Schönberger, True Price, Torsten Sattler, & Pollefeys, 2016) 

3.2.2 CBIR (Content-Based Image Retrieval) 

Content-Based Image Retrieval is a way of retrieving images from a large database 

based on their semantics, for example, both images contain a red apple, by using query 

images and matching candidates. It can also be used for photogrammetry, the 

semantic metric being along the lines of both images featuring a specific building, or 

facade of the building. This means that it can be used in conjunction with the internet 

and image sharing websites such as Flickr and Instagram to semi-automatically build 

a dense dataset of images containing a landmark or fill in missed sections if one 

devised such a method in conjunction with Structure-From-Motion techniques 

(explained later). This is also relevant because contemporary photogrammetry 

techniques benefit from low outlier ratios and those techniques eliminate them in the 

dataset gathering phase.  

There are four main ways to retrieve an image based on its content: 

- Colour histogram, a representation of the distribution of colours within an image. 

Similarly distributed images would be matched, unfortunately, this is not really 

a good indicator since it is highly unadaptable to something such as a viewpoint 

shift or lighting change, for example, day versus night, and it would be rather 

likely to match a green apple to simple grass. (Rishav Chakravarti & Xiannong 

Meng, 2009) 

- Feature-based, relying on feature detection as explained below, distinct visual 

features are extracted from an image and matched against a possibly large 

database of features for your content instance, for example, a certain building. 

The performance and accuracy are highly dependent on the feature detection 

and matching algorithm, also explained below. This can also be based on a bag 

of visual words approach for computational efficiency, the size of said bag will 

affect both the performance and accuracy of this method wildly. (Afshan Latif, 

Aqsa Rasheed, Umer Sajid, & Tehmina Khalil, 2019) 

- Deep learning based, a trained approximation of a function to find matching 

images, to a certain object instance. Accuracy will vary wildly from the type of 
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neural network model used to the data, and random error is also very possible 

if unlikely. This is the current state-of-the-art CBIR method due to its accuracy, 

some models reaching well over 90%. (Dubey, Shiv Ram, 2012) 

- Hybrid (Feature fusion), this method relies on a mix of the previous methods, 

the predictions for whether it is the same object in both images are weighted for 

the selected ways, and the final prediction is based on that. 

3.3 Feature Detection and Matching 

Feature detection and matching is a fundamental problem in reconstruction from 2D 

images, which requires a way to match pixel points of one image to corresponding 

points in another image, despite any distortions, slight viewpoint or lighting changes. 

No perfect solution currently exists and the internal working of any feature detector, 

descriptor and matching mechanisms are beyond the scope of the project. This section 

will instead cover the necessary components of feature detectors for SfM applications 

as described by (Lowe, 2004).  

3.3.1 Scale Invariance 

This means that no-matter how much you zoom in or out of an image, the feature 

descriptor remains the same. This is useful in photogrammetric applications because 

images taken closer to and further from the subject would otherwise have their 

detected features described as radically different, instead, the features are able to be 

matched to their higher or lower scale counterparts.  

3.3.2 Rotation Invariance 

This means that a feature rotated by some degree is still recognised as the same. An 

example might be upside down images, a feature detected in an upright image will still 

match with the same feature in an upside-down image of the same subject, or a less 

extreme version would be a slightly rotated one. 

3.3.3 Translation Invariance 

This means that a feature can be slid along any axis and it will still be recognised as 

itself. To provide an example, the camera can be slid on a straight rail in front of a 

building facade and the feature will be recognised even when it moves along the 

images. 
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3.3.4 Lighting and Illumination Tolerance 

This means that detected features will still be matched under different lighting and 

contrast conditions. Images taken on a cloudy and sunny day should still match, as 

should they also match in night-time conditions under ideal circumstances. 

3.3.5 Illustration 

The above can be illustrated using this graphic by (Krause, 2016): 

 

Figure 1 Visual feature invariances 
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3.4 Reconstruction 

3.4.1 Photogrammetry 

For the purposes of this project, photogrammetry is defined as a method of measuring 

physical objects using positive photographs or images and other energy patterns such 

as LiDAR (a way of detecting how far away an object is from a laser) or depth-sensing 

cameras. There are various types and generations of photogrammetry, but this 

dissertation will primarily be focusing on relatively close-range terrestrial 

photogrammetry, that is, photogrammetry of images usually taken from a position on 

the ground and within roughly 300 metres of the target like an internet-based dataset 

would provide. 

Contemporary traditional photogrammetric techniques are not well suited to unordered, 

uncalibrated multiple camera internet sourced images, this is due to the algorithms 

implemented to do said reconstruction (discussed later) and this affects the 

computational time and the final reconstruction quality. This problem arises from the 

unknown camera intrinsic and extrinsic parameters, intrinsic being things like focal 

length, optical centre, radial and tangential distortions, with the extrinsic being the 

camera pose, i.e., where it is located and pointing including rotation pitch yaw and roll. 

This is because the algorithms usually rely on good known intrinsic and extrinsic 

parameters estimation to reduce their search space for a good solution, i.e., 3D 

reconstruction. 

The major computational time consumption is the feature detection and matching, 

features are descriptions for certain parts of an image that would be recognised for 

being the same feature in another differently posed image of the same subject when 

matched, an oversimplified example in photogrammetry might be corners, and their 

orientation. The detection of the features takes some time depending on the algorithm, 

with types existing for real-time applications and post-gathering processing. There are 

a few features in said feature detectors that must be considered; scale, rotation and 

translation invariance as well as tolerance to lighting and distortions like shear mapping 

so that the given feature detector can recognise the same feature under a variety of 

conditions.  
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The other, more computationally expensive problem is matching features between 

images, which can take quite a lot of time depending on the number of features 

detected, to produce possible image pairs. These are then spatially verified using an 

algorithm such as RANSAC (Random Sample Consensus) or GHT (Generalised 

Hough Transform), spatial verification is the process of determining a spatial 

correlation, i.e., determining it is one landmark in both images, instead of another 

landmark with which the first one may share some features. This can be done, as an 

example using RANSAC, by choosing a random sample of observations from the entire 

set of matches, computing a transformation, for example, affine projection, and seeing 

if this produces the highest number of matches and thus the minimal error, with a 

predetermined number of allowed iterations, this should eliminate the outlier image 

matches and the feature matches for such verified images can be accepted, RANSAC 

has been known to work satisfyingly with datasets comprised of over 50% outliers 

(Hast, Nysjö, & Marchetti, 2013).  

Another facet of feature matching is that the features for highly repetitive structures 

might be discarded, this is due to visual descriptors for a fence being easy enough to 

match anywhere along its line, which eventually shows up as a large amount of error 

for that structure, making its reconstruction difficult. This is alleviated by using epipolar 

geometry algorithms, those estimate the camera extrinsic using tie points and check 

that the matches are along the same epipolar line, doing so leaves the correct matches 

for the repetitive structures intact because while the descriptor may not change much, 

the epipolar geometry does, this is also called “guided matching”. 

When the feature detection and matching are both complete, the reconstruction 

begins, and the camera positions, intrinsic and extrinsic are both estimated and refined 

using a process called bundle adjustment and a type of SfM (Structure-From-Motion), 

there are three main ones; incremental, where camera poses are calculated one by 

one and added to the collection to form the final produce, global, where all camera 

poses are calculated at the same time, and finally, out-of-core, where several sub 

models are made and then merged together into the final cohesive model.  

SfM also uses the bundle adjustment algorithm which does the following; as more 

images are added and registered in the reconstruction, the point coordinates for a 

feature are refined alongside the camera intrinsic and extrinsic, outlier points, i.e. 



   

   
  24 

points which are not seen from a predetermined number of images or points which are 

determined to be erroneous due to having their location be unstable between a range 

of images, are removed to reduce the “messiness” of the final model. This means that 

photogrammetry techniques can also be used to find the camera parameters if some 

constraints are applied. 

Additionally, the entire process can be made easier by using video, since the search 

space for good matches could be restricted to only a couple neighbour frames instead 

of the entire dataset, or to match video frames to a reconstruction afterwards and run 

it again with the recovered positions for more reconstruction detail. There are more 

approaches that can be taken to narrow the space to choose image pairs, examples 

might include camera GPS coordinates, Ground Control Points (GCPs), i.e. a set of 

known 3D points identified in an image. Finally, possible image pairs can be specified 

manually, this means they can even be inputs from a deep learning solution, image 

hashing or any other algorithm. 

3.4.2 Scale-Invariant Feature Transform (SIFT) 

SIFT is a feature detection and description algorithm, it detects feature points for 

images, where the points’ descriptors in an image are likely to be present in the same 

relative place regardless of how the image is rotated, moved, illuminated and/or scaled. 

Then, it extracts the feature descriptors for those points, a 128-dimensional vector 

descriptor, although how that happens is beyond the scope of this project. It is the 

current state-of-the-art, most stable, feature detector and descriptor, and since the 

patent has expired as of the writing of this dissertation, free to use. Additionally, the 

SIFT feature descriptor gives rise to a good number of features per image, although 

heavily depending on the content of the image, it has been estimated by (Lowe, 2004) 

to be about 2000 stable features for a 500x500 pixel image. 

3.4.3 Structure-From-Motion 

The inner workings of structure from motion algorithms are beyond the scope of this 

dissertation. Instead, a simple overview of incremental structure from motion will be 

provided, that said, it is a way of recovering 3D positions from a collection of images, 

or other media such as videos for the purposes of building a 3D model. This process 

usually involves, in order: 
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- Detecting and matching features between images, this involves running the 

point detection algorithm for the desired feature type, then extracting the 

descriptors of the same feature type, technically, the point detection need not 

be the same as the feature descriptor, however, SIFT is both a feature detection 

and description algorithm, considered the best in the field for now. 

- Then, using an iterative process called bundle adjustment to keep a statistic 

called “reprojection error” below a certain threshold, four by default in the 

OpenMVG software package, this reprojection error is the distance between 

where a point is shown to be in the image versus where it is in the 3D 

reconstruction, a straight line from the point should be where it is in the 

reconstruction under ideal conditions, taking into account the image pose and 

intrinsic, this is taken as a measure of error. 

- This measure of error is passed along as the intrinsic, namely the camera optical 

properties of distortion and the extrinsic, where the camera is in the world, 

including where it is pointing, are refined, optimized until the reprojection error 

is under the set threshold. Then, a new image is localised into the reconstruction 

and the process continues until there are no more images to be added, this 

addition process can also be done in batches instead of a singular image.  

- There are also additional extensions to the bundle adjustment algorithm called 

local bundle adjustment, this means that the process is only applied to the 

images viewing the points being refined, instead of globally, which is how the 

global variant of bundle adjustment works, nonetheless, global bundle 

adjustment still must be ran in that scenario, although only at the end to ensure 

everything looks right and that there are no disjointed structure pieces present. 

- Once the process of bundle adjustment has arrived at a suitable solution under 

the specified error threshold and additional images cannot be localised, one is 

left with a model of the subject and the intrinsic and extrinsic of the cameras as 

well as their corresponding images, since some images can share intrinsic 

parameters. 

Finally, once the above problems are solved, there is still the matter of extracting the 

GPS coordinates for each camera out of the reconstruction, and the possibility of doing 

the same for an image not used in the initial or refinement reconstructions. This means 

the model will have to be aligned and scaled using an inferred GPS position from a 

subset of images containing location EXIF (Exchangeable Image File Format) tags. 
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New images will need to have their features detected, localised into the reconstruction 

and the camera pose inferred in the model scaled using GPS coordinates.  

Additionally, this only addresses the process for a single landmark, but since the model 

is georeferenced in GPS coordinates, it should not overlap with anything else, as it 

would have in relative coordinates. This behaviour is extremely desirable for merging 

the different reconstructions together into a cohesive 3D point cloud of something large 

scale like a city or perhaps, given more work, on even larger scales. This also 

addresses the recovery of which landmark an image contains, since the pose in the 

world would be recovered, it need only use human intuition while looking at a map. 

3.4.4 Complexity Problems 

While the relevant information on bundle adjustment is given in the Structure-From-

Motion section, it is important to note that bundle adjustments suffer from an inherent 

problem when it comes to large reconstructions, for example, city-scale 

reconstructions. 

“The traditional bundle adjustment algorithm for structure from motion problem has a 

computational complexity of O((m +  n)3) per iteration and memory requirement of 

O(mn(m + n)), where m is the number of cameras and n is the number of structure 

points.” (K. Mitra & R. Chellappa, 2008) 

This means that while it is not exponential in complexity growth, it is cubic, and the 

number of points detected per image for SIFT is enough so that it quickly becomes 

impractical to add new images with each taking on the order of minutes to hours.   

3.4.5 OpenMVG 

OpenMVG is a framework for 3D reconstruction from images, meaning, besides 

dataset gathering, it unifies all the above concepts and processes into one 

comprehensive package. It also features various utility functions for georeferencing a 

model, constraining the image matching and reconstruction processes using pose 

priors like GPS and localisation of new images into an existing reconstruction, 

additionally, it mostly stores its computed data in cleartext readable JSON (JavaScript 

Object Notation) format. Altogether, these functions can be used for localising images 

and extracting camera locations. Finally, the library comes with binaries that have 
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reasonable, albeit user-tuneable parameters by default. The use cases for such 

photogrammetric software were covered in the introduction section. 

3.5 Previous work 

There have been a few studies on automatic geolocated image dataset gathering, one 

approach based on crawling Flickr users and their connections, in other words, the 

Flickr friendship graph, then crawling through the new set of users’ images while 

cleaning the user-defined image tags using search engine suggestions, both to correct 

syntactical errors, and account for the variability of how users spell one tag. This data 

was then indexed using the quad-tree data structure, recursively dividing a world map 

of tiles until a stopping condition is satisfied, unfortunately, this has a maximum depth 

before it becomes impractical, the paper proposed a solution by dividing the world map 

into tiles, created only if there are images within the area bounds of said tile, and then 

the quad-tree data structure was applied to each individual tile (Hatem Mousselly 

Sergieh, Doeller, Elod Egyed-Zsigmond, & Harald Kosch, 2014). The shortcoming of 

this work is that it only dealt with accurate GPS tagged images and did not cover any 

technique for including untagged, unlocalised images in the dataset.  

First, a method for pose estimation given a set of geolocated images was given by 

(Akihiko Torii, Sivic, & Pajdla, 2011). The study proposed a method of localising images 

without Multiple View Geometry by constructing a graph, nodes being a image’s visual 

features, weighted by how often they appear in the image to how often they appear in 

the entire set of images as well as their location on a planar map, and the edges being 

their links to their spatial neighbours by visual feature matched homography. The 

localisation problem was then defined as an interpolation of GPS location by image 

similarity. This method while functional, and scalable to millions of images was simply 

not as accurate as Multiple View Geometry approaches and suffered from a high 

number of mismatched positions. That said, the study only used a pair of views for 

localising a new image even though it is generalisable to a higher amount of 

localisation query images. 

Another work dealt with direct 2D-to-3D descriptor matching for image localisation, the 

paper dealt with the problem by treating the entire reconstructed location as one big 

image’s worth of descriptors and matching a novel image’s descriptors using classic 

SIFT matching. Then, they used a six point Direct Linear Transform (DLT) and 
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RANSAC algorithms for triangulation, essentially, they used six matched features to 

estimate the camera position. Additionally, they extended it using a prioritisation 

scheme by searching through all 3D point descriptors associated with a certain visual 

word (Sattler, Leibe, & Kobbelt, 2011).  This method does not estimate the intrinsic 

parameters of the camera which leads to lowered usability for extending 

reconstructions using the additional registered images. 

Finally, a method for localising images as well as estimating the novel images’ camera 

intrinsic parameters was detailed by (Li, Snavely, Huttenlocher, & Fua, 2012). This 

method contrasts with the previous approach which only approximates a camera pose 

without the near pixel level accuracy needed for various augmented accuracy 

applications. This paper demonstrates the ability to use contemporary Structure-From-

Motion techniques for accurate pose and camera parameter estimation in relation to a 

3D model. Additionally, it highlights the problem of spurious 2D-to-3D matches for 

bigger 3D model datasets simply due to a much larger amount of plausible image 

registration locations. Unfortunately, this approach seems to require a reconstructed 

point cloud by way of Multiple-View Geometry which is rather computationally 

expensive. 

The shared shortcomings of included localisation strategies are that they rely on having 

a dataset of mostly accurate GPS tagged images when they could have had their 

localisation capabilities augmented by the orders of magnitude more available 

unlocalized high-resolution imagery. The geolocated image datasets approach may 

also not be feasible for hard to access places, places that have not yet benefited from 

large spread adoption and usage of accurate GPS image-capture devices, or simply 

places that are located within areas of poor GPS reception, which leads to a gap in the 

reconstruction and localisation capabilities of the current methods. Additionally, the 

current research did not cover a way to handle outlier data points for faulty GPS tags 

due to their usage of solely accurate geocoded images nor does it investigate the 

localisation accuracy for novel images within the GPS datum in a simple manner, such 

as metres of distance between the expected and actual position of an image.  

3.6 Summary of previous work 

In conclusion, there does not seem to be much research on the collection of accurately 

GPS tagged images of a specified target, instead focusing on gathering all available 
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GPS tagged images. Next, while there are previous attempts at localising images into 

GPS coordinates, with and without including photogrammetric 3D reconstruction 

processes, the latter taken care of by interpolating image positions between N matched 

views, a vast majority of them seem to rely on a gathered dataset of accurately 

geotagged images and hardly any put the localisation accuracy into easily 

understandable terms, like metres from actual position, nor do they compare the 

localisation accuracy to other localisation solutions, for example, GPS. 

4 Methodology 

In this section, the tools and materials used will be disclosed and the project 

implementation with the reasoning behind said design choices will be justified. 

Additionally, the resultant project output data will be analysed and compared to the 

benchmark metric of assisted GPS tagged image accuracy. 

4.1 Aims 

The aim of this dissertation is to ascertain whether accurate GPS locations can be 

recovered from a photogrammetric 3D reconstruction of a popular landmark, and 

whether the image dataset for the reconstruction and georeferencing of the 3D model 

can be acquired semi if not entirely automatically from open image sources. 

4.2 Objectives 

To achieve my aims, the following objectives will need to be achieved: 

- Download a variety of plausible landmark imagery based on a query text. 

- Filter the bad images out of the dataset, based on factors of enough resolution, 

little blurriness, no duplicate images and accurate GPS tags. 

- Create GPS coordinate aligned 3D reconstruction using Structure-From-Motion 

techniques. 

- Localise new images into the 3D model to compare to their ground truth for an 

accuracy rating and to iteratively refine the model as more images are localised. 
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- Merge multiple models together aligned to the GPS coordinate system for 

higher localisation ability. 

A visualisation of this process is available below: 

Figure 2 Project Flowchart 
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There will be several outputs for the project, a rather accurate point cloud of a popular 

landmark which can later be used for a dense point cloud and eventually a mesh that 

can be included in any number of digital asset libraries, such a library being a collection 

of objects that can be included in the creation of other digital media, for example, 

videogames and movies. The main differences between the three is that a sparse point 

cloud is usually only used for registering the camera positions and estimating the 

camera intrinsic parameters, a dense point cloud is more commonly used for 

reconstructing the entire object with a great many less holes for high quality mesh 

generation or inclusion into 3D scenes like videogames whose collision calculations 

benefit from the additional density, finally, a mesh is a 3D model made of polygons, 

these meshes can then be put through a process called decimation where they are 

simplified into being more efficient in a video game. A simple visualisation will be 

provided for the recovered positions using any compatible viewer and a Keyhole 

Markup Language (KML) file. 

4.3 Scope and Limitations 

This project will be limited in scope both in terms of the things done and in terms of the 

things described, this is because: 

- I am not a photogrammetrist, or data scientist, and hold no experience or 

knowledge about the field in a professional capacity, this means; the techniques 

and parameters used for reconstruction are a combination of a best guess, the 

software package defaults and light sanity checking by way of manually 

inspecting the resultant point clouds and image locations. 

- The reconstructed locations were only from the facades most photographed by 

the image sharing platform’s users. Additionally, only the outside of the 

landmarks was considered even where inside reconstructions could have been 

due to GPS tagged images being assumed of lower accuracy while inside.  

- Multiple 3D reconstruction tools were not evaluated due to problems in 

designing an interface for each set of storage conventions used and not all of 

them featuring robust image localisation functions. Additionally, not all the tools 

considered even provided functions to georeferenced models without manually 

tagging ground control points in a few images. 

- Another limitation is that the localisation positions are not compared against a 

known ground truth, that would require pinpoint accuracy only granted with the 
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use of a laser scanning device like LiDAR or a dataset made with the use of 

such. Such datasets could not be found, and I must do the next best thing, the 

assumption that images containing a bearing tag are more accurate, and this 

seems to hold true for the ones checked manually. Another sanity check was 

also implemented in checking the distances to the reconstruction subject 

longitude and latitude, in the hopes of rejecting replicas located in other 

countries, or widely inaccurate GPS tags.  

- Next, the assumption that those bearing tags containing images are also 

accurate in listing the correct altitude was made, this also seems to hold true.   

- The computational time it would take to do every experiment conceived during 

the work for best results or choosing a specific path to go would be more than 

the time until the deadline of this project. Similarly, not many landmarks were 

computed for the same reason, this is only a proof of concept. This is also the 

reason for not using anything beyond five hundred images per reconstruction, 

it simply takes too much time to be of any worth for the diminishing returns on 

localisation capabilities. 

- The spurious feature matches problem for bigger collections of 3D model points 

and descriptors was not considered, this means that the implementation for this 

dissertation is not viable for ever continuing 3D model extensibility for higher 

localisation capabilities. 

4.4 Hardware 

The system used for this project has the following specifications, for estimating time 

requirements on other machines, only relevant items are included: 

- CPU: Ryzen 9 3900X @ 4.1GHz 

- RAM: 4 x 16GB (64GB total) @ 3200MHz 

- SSD: 512GB Sabrent Rocket NVMe 

- HDDs: 2TB (2 x 1TB) in RAID0. 

- OS: EndeavourOS (ArchLinux-based distro) with kernel version 5.11.16. 

Although this is an above average amount of system memory by contemporary 

standards, it should be noted that the feature detection process can take even more 

than that depending on the allowed number of threads and describer pre-set. The 

reconstruction process used does not scale up well and would instead benefit from 
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faster threads. For comparison of runtime on other machines, the process usually 

takes a day for the entire project pipeline on this system. 

4.5 Software 

- The version control system known as Git and a widespread Git repository cloud 

hosting platform known as GitHub will be used to manage the code for this 

project. The code for this dissertation will be available at; 

https://github.com/wiktoraleksanderkaczor/honours_approaches 

- The programming language of choice is Python, version 3.8, alongside a few 

module dependencies, all listed in the requirements file within the GitHub 

repository. 

- The 3D reconstruction library and tool package called OpenMVG (develop 

branch commit; “5e98d504bb76ba2d1d07ae80ac2acb10b3d6f97d”) will be 

leveraged for the initial 3D model reconstruction, georeferencing and image 

localisation.  

- The CloudCompare point cloud viewing software, version 2.11.3 (Anoia), stable 

edition for Linux 64-bit. This was used for viewing and manually inspecting point 

clouds generated by OpenMVG. 

- The GpsPrune image data viewing software, implemented in Java, a 

comprehensive solution to viewing, editing, and converting GPS coordinate 

formats. This was used for an initial inspection of image dataset GPS data for 

extreme outlier detection. 

4.6 Reconstructions 

The reconstructions made as part of this project will be detailed here, a point cloud 

size statistic and their respective subjective strengths and weaknesses, it also features 

the Root Mean Square Error (RMSE), i.e., how far from the line of best fit are the 

prediction errors: 

4.6.1 Descriptions of each reconstruction 

Table 1 Reconstructions 

Subject name Point 
cloud 
size 

Strengths Weaknesses RMSE 

https://github.com/wiktoraleksanderkaczor/honours_approaches
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Stonehenge 210,328 
points 

The circle of stones 
was reconstructed 

perfectly, in detail, and 
only the circle, no other 
objects. All the major 
stones, and some of 
the stumps on the 

ground were extracted. 

It has a fair amount of 
noise, extraneous 

sparse points, possibly 
due to the various 

image artifacts 
triangulated 
erroneously. 

0.581722 

St Giles 
Cathedral 

160,202 
points 

The front façade was 
detailed and clean with 

comparatively little 
noise as well as 

featuring additional 
neighbouring buildings 

and statues. 

The back half was not 
reconstructed in the 

slightest and the sides 
of the structure lack 

much discerning detail. 
Almost blending with 

other buildings on one 
side. 

0.722516 

Sagrada 
Familia 

82,629 
points 

The detail for the 
reconstruction 

extended to even the 
small pillars and there 

was an astounding 
lack of ‘noise’. 

Only the frontal façade 
was reconstructed, and 

even that was with a 
crane in the 

background, this leads 
to lower localisation 

capabilities. 

0.630553 

Palace of 
Versailles 

106,504 
points 

The lines all look 
straight, no warping 
due to faulty camera 
intrinsic estimation. 

Only the alcove of the 
front of the palace was 

reconstructed 
alongside a small 

section to the right, the 
gate featured in a fair 

few image was not 
included. 

0.74517 

Edinburgh 
Castle 

431,965 
points 

It was reconstructed 
completely, from all 

sides, it is the largest, 
in terms of sheer area 

covered, 
reconstruction. 

The lesser seen inner 
contained buildings 

were not reconstructed 
properly, nor were the 
inner facades of the 
outer seen buildings. 

0.607079 

Cathédrale 
Notre-Dame de 

Paris 

395,300 
points 

The building was 
reconstructed from all 

three of its allowed 
entry facades, 
including some 

extraneous structures, 
like the statue in the 
back gardens or a 

building while 
approaching from the 

Seine river. 

It is a rather noisy 
model, there are small 

points, likely due to 
visual artifacts on the 

featured camera 
sensors, or temporal 
coherence based on 
tree growth, it might 

negatively impact final 
localisation accuracy.  

0.714352 

Big Ben, 
London 

188,627 
points 

It is subjectively a very 
clean model with lots 

of additional 
reconstructed building 
faces increasing the 
feature matching and 

localisation power. 

The entire half behind 
the most popular one is 

not reconstructed; it 
seems the pictures 

were only taken from 
one side. 

0.635672 

4.6.2 Images for each reconstruction 

The images are in the same order as they are included in table one, from at least three 

viewpoints, the green dots are reconstructed camera positions: 
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4.6.2.1 Stonehenge 

Figure 3 Stonehenge reconstruction images 

 

4.6.2.2 St Giles Cathedral 

Figure 4 St Giles Cathedral reconstruction images 

 

4.6.2.3 Sagrada Familia 

Figure 5 Sagrada Familia reconstruction images 

 

4.6.2.4 Palace of Versailles 

Figure 6 Palace of Versailles reconstruction images 

 



   

   
  36 

4.6.2.5 Edinburgh Castle 

Figure 7 Edinburgh Castle reconstruction images 

 

4.6.2.6 Cathédrale Notre-Dame de Paris 

Figure 8 Cathédrale Notre-Dame de Paris reconstruction images 

 

4.6.2.7 Big Ben, London 

Figure 9 Big Ben reconstruction images 

 

4.7 Approach 

The problem is split into three subjects, and explained in the subsections to follow: 

1. Acquisition of a suitable photogrammetric dataset including validation data. 

2. Reconstruction, model merging and localisation. 

3. Analysis of results and comparison to validation data. 

4.8 Dataset and validation data acquisition 

4.8.1 Image acquisition and visual filtering 

To satisfy the requirement of several hundred images of a few famous landmarks with 

a subset for each containing valid and accurate GPS tags. A couple methods were 
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investigated for this task, unfortunately, Google makes it incredibly hard to scrape 

images from their Google Images search results, DuckDuckGo makes it easy to 

retrieve their image search results, and even download the images, however, it suffers 

from a high number of images having watermarks, lack of EXIF tags, including the 

required GPS information and not being very high-resolution overall, the last 

considered was a self-hosted version of Searx, unfortunate, this suffered from the 

same problems as all other search engines. Finally, the platform chosen was the 

image-sharing website called Flickr. Flickr seems to provide a free, key-authenticated, 

albeit rate-limited (server load alleviation) API to most of their website services, 

including search results and easy links to download them. Additionally, the 

programming language of choice, Python, has a handy and well-maintained, although 

unofficial, module dealing with the Flickr API.  

The decision to use Flickr led to writing the code for retrieval of image links from said 

website, unfortunately, retrieving untargeted images is not very useful. Thus, the 

project requires a textual query for the landmark to be reconstructed, for example, the 

“Palace of Versailles” or “Notre-Dame Cathedral”. Additionally, while a Flickr API 

representation of an image is retrieved, it does not automatically lead to a 

downloadable link, Flickr holds its image in a variety of sizes, the highest available 

size, with special priority given to the original files, was chosen for the highest amount 

of detail available, and thus the greatest number of matchable features, and the images 

were downloaded. Next, all available links will be retrieved even if the downloading will 

stop at a certain point, monitoring code and early stopping behaviour was implemented 

to combat this issue. The relevant code is available in appendix four under “Download”. 

The images downloaded were usually in the JPEG format the reconstruction software 

accepts but some were in PNG (Portable Network Graphic) or BMP (Bitmap Picture). 

These images were converted to JPEG by usage of an image conversion function from 

the popular ImageMagick suite. The original unused format images were then deleted. 

Next, another utility called “jpeginfo” to ensure their encoded form was still readable 

and the images that did not pass this test were immediately deleted. The relevant code 

snippet is available in appendix four under “Conversion”. 

Then, after some manual inspection, it was determined some of the images in the 

dataset were duplicates, and since this additional redundant information, or very small 
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viewpoint changes are not useful in the reconstruction process, they had to be filtered. 

This was achieved by an application of image hashing, the difference hash (dHash) 

algorithm, the hashes can then be subtracted from each other elementwise, the result 

is the hamming distance of the hashes and can be used as a direct measure of whether 

the images are identical by a threshold value. The images that failed this test were 

moved to a duplicates folder. The dHash method is invariant to a couple useful 

properties, for example, colour changes, small perspective changes, image size and 

aspect ratio i.e., how it might be stretched or altered in colour. A threshold of five was 

determined to be the best after manual inspection of the pairs detected as identical, it 

was robust against false positives, and still eliminated very close image matches, 

alongside their rather minimal degree adjustments in viewpoint. The code for this is 

available in appendix four under “visual checking”. 

Another check implemented was a filter on the number of pixels in each image, each 

image not containing at least 307200 pixels, otherwise known as 480p or the resolution 

640x480 was moved to a separate folder. The final photometric filter was a Laplacian 

variance, essentially, a Laplacian filter is applied to an image for sharp edge detection, 

the edges which rise and fall quickly, the variance of this resultant derivative image is 

taken as the metric for whether an image is sharp, i.e., the camera was well calibrated 

and focused when taking the photo, if this metric is under a certain user-defined value, 

the image is considered good enough. The default number used, 125, was determined 

by running the method against a dataset of variably blurred images, and manually 

checking to see at which point it provided sufficient protection against the unusably 

blurred images, and where it picked up false positives. The code for this is also 

available in appendix four under “visual checking”. 

4.8.2 Additional options 

Additional options that could have been explored, and were, in some part, are image 

clustering techniques, for example, using deep neural networks to extract features, 

brain-like representations of features, like spires, or building, etc. before matching 

those features to find images featuring the same object, or building, hopefully specific 

to façade, in the hope of skipping the original image matching stage and saving 

computation time in later stages to increase the size of the reconstruction. Those would 

have run on the graphics card and would have hopefully utilised more specialised 

hardware to save the general-purpose processor. Unfortunately, those features, in the 
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way it was implemented for a prototype, did yield clusters of similar images but did not 

put similar clusters of images together, plus, some of the clusters had “noise”. This 

additional method was then discarded, both because of the performance and in favour 

of remaining a general processor solution only, accessible to everyone.  

4.8.3 Validating the validation dataset 

Once the images were sorted into their folder structure based on visual features, the 

project needed a ground truth dataset, a reconstruction geo-registration dataset and a 

normal image reconstruction dataset: 

First, the project needed a good number of images for the 3D reconstruction, as 

mentioned in the background section, those images work best if they have a lot of 

visual features that can be matched to other images and eventually, those features 

used to register the position of the image in the registration. Unfortunately, the image 

and feature matching as well as the actual reconstruction processes take an increasing 

amount of time as the number of images increase, and even more so for higher 

resolution images in the geometric verification stage of feature matching. This was 

done by, first, prioritising high-resolution images to increase the number of detected 

features, second, prioritising high quality images, achieved in the last section. The 

overall limit of images used is a user-defined number to be set depending on the 

capabilities of the user’s computer and the user’s patience. This code is available in 

appendix four under “Moving images”. 

Next, the problems of the reconstruction geo-registration set were solved in the exact 

same way as the reconstruction dataset except for the limit for images, while still user-

defined, it should be adjusted to the semi-automatically acquired images, to maximise 

the chances of a successful and accurate geo-registration and provide enough images 

left over for accuracy evaluation. Although the ideal choice for production use would 

have been to use them all, only fifteen per reconstruction were used. The images were 

first inspected with the software called GpsPrune, this showed some extreme outliers, 

for example, some images were in entirely differing countries, to solve this; a simple 

GPS sanity check was devised.  
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4.8.4 GPS tags sanity check 

Another check was to retrieve the latitudinal and longitudinal position of the landmark 

in question using the help of the GeoPy Python module, said module includes a 

function called Nominatim (“by-name”) to query OpenStreetMap to retrieve the data 

associated with a particular textual query, like an address or popular place name. The 

distance in metres of each images’ GPS tags was then compared against this longitude 

and latitude, and if over a certain user-defined threshold, the image GPS tags were 

considered incorrect, and the image was moved to another folder. Additionally, the 

GPS images were separated into two groups, ones with a bearing and altitude, and 

ones only containing latitude and longitude, these were then separated into their own 

folders. This was done because the images which included both an altitude and 

bearing in their tags seemed to be accurate, at least for the ones investigated, and only 

for the latitude and longitude tags. The altitude tags were dealt with using the relative 

model, explained in the subsection below. The rest of the GPS images used for 

localisation accuracy testing had their GPS tags extracted into a file, and a version of 

the image with cleared EXIF tags was saved. Additionally, the GPS images without an 

altitude or bearing tag were saved in a similar state. This code is available in appendix 

four under “GPS sanity check”. 

4.8.5 Retrospective GPS validation 

Furthermore, and although done in retrospect, the GPS image dataset had to be 

investigated, to see if the positions for each image are where they should be on a map, 

this was done using the GpsPrune software, it showed that they were off by a bit, the 

general twenty meter range of error in normal GPS, this would not have mattered had 

there been a fair bit more accurately GPS tagged images or if the dataset gathering 

technique used more sophisticated techniques to find images in the first place but it 

will likely cause wildly erroneous geo-registrations for reconstructions that do not have 

enough GPS tagged images to stabilise the process.  

4.8.6 Validating GPS by leveraging the relative model 

Finally, the validation of the GPS positions for geo-registration was accomplished using 

the OpenMVG built-in Least Median Squares estimation (LMeds) function during 

model georeferencing, also called “robust estimation”. This method essentially checks 

that the 3D positions in the relative reconstruction fit with the GPS points defined in the 
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tags of the images, the best fitting model win i.e., voted on by the majority, the faulty 

images had their poses and features in the structure deleted. The method used was 

chosen to be LMeds due to the decreasing sum of errors, max, median, mean, and 

average, all in metres, for each localised good GPS tagged image or collection of 

images that make up a model compared to just using all available points. The code 

snippet for this is in appendix four under “geo-registration”. 

The “Total” in the graph represents all reconstructions, the error is only calculated using 

the latitude and longitude values without altitude being considered and all values are 

rounded to three decimal places: 

Table 2 Georeferencing estimation using all GPS images. 

Subject 
name: 

Sum Error Average Maximum Minimum Images 
localised 

Images for 
geo-

registration 

Stonehenge 702.171 26.006 109.284 2.723 27 / 37 12 

St Giles 
Cathedral 

907.642 60.509 168.661 11.467 15 / 16 19 

Sagrada 
Familia 

204.972 25.622 108.123 7.047 8 / 16 8 

Palace of 
Versailles 

33652386.817 1246384.697 2158687.61 4022082.981 27 / 49 5 

Edinburgh 
Castle 

398.424 79.685 277.686 7.474 5 / 7 19 

Cathédrale 
Notre-

Dame de 
Paris 

25845148.038 807660.876 1062442.972 34755.457 32 / 41 13 

Big Ben, 
London 

37167.657 4129.74 35879.704 48.22 9 / 9 18 

Total 59536915.7 2058367 3257674 4056915 123/175 94 

 

Table 3 Georeferencing estimation using LMeds 3D similarity outlier filtering. 

Subject 
name: 

Sum Error Average Maximum Minimum Images 
localised 

Images for 
geo-

registration 

Stoneheng
e 

306.698 11.359 92.145 0.636 27/37 6 

St Giles 
Cathedral 

990.337 66.022 175.625 9.15 15/16 9 

Sagrada 
Familia 

480.05 60.006 360.939 1.141 8/16 4 

Palace of 
Versailles 

3163.414 117.163 669.437 6.01 27/49 2 

Edinburgh 
Castle 

363.636 72.727 290.887 4.386 5/7 9 

Cathédrale 
Notre-

Dame de 
Paris 

1148.349 35.886 663.624 1.965 32/41 6 
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Big Ben, 
London 

2481.734 275.748 1403.129 27.518 9/9 9 

Total 8934.218 638.911 3655.786 50.806 123/175 44 

Further analysis for this table will be provided in the analysis section. 

4.9 Reconstruction, model merging and localisation 

4.9.1 Preparation 

Now that a suitable, high-resolution, filtered image dataset is available for 

reconstruction purposes, with a subset of relatively accurate GPS tagged images.  

The reconstruction software used, OpenMVG, has its own internal representations of 

the various elements required for a successful reconstruction, for example, the SIFT 

features for an image, the geometrically verified matches and the intrinsic camera 

parameters and poses. It also provides a wide variety of utility functions, exposed using 

a multitude of commands and command line arguments, used to generate the various 

intermediary steps’ outputs and the final product of a good reconstruction. Below, the 

various steps involved in processing the gathered dataset are described. 

First, the visual features of an image must be extracted, the SIFT features referred to 

in the background section, invariant to a wide variety of visual distortion properties, 

unfortunately, OpenMVG has its own internal representation of those features, without 

the ability to import the plaintext American Standard Code for Information Interchange 

(ASCII) SIFT features format described by the inventor of said feature extraction, 

description and matching algorithms, necessitating the use of the general-purpose 

processor limited feature extraction module present in OpenMVG. While the module is 

by no means slow, it suffers from a notable problem of keeping detected features in 

memory, in some cases, leading to out-of-memory errors. There are a variety of options 

for this function, including using higher densities for feature detection and different 

feature describers altogether but the options used were the defaults suggested by the 

OpenMVG documentation. 

Next, the features must be matched and geometrically verified, once again, this was 

done using OpenMVG internal utilities, once more limited to general-purpose 

processing only. This stage tries to use an image matching algorithm called Cascade 

Hashing, the description of which is outside the scope of this project, to match images 

for lowered processing requirements in the next stage, matching individual features, 
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once again outside of the scope, and proceeding to verifying the geometry behind said 

matched features, the results are stored in a binary OpenMVG representation. Once 

again, the options used for this utility were the defaults. 

This was accomplished as shown in appendix four under “feature extraction and 

matching”. The defaults were usually used for all options, that said, where possible, 

the number of threads used was raised to the available system maximum, and the 

feature matching option had the “guided matching” option enabled, the OpenMVG 

word for geometric verification, despite the additional execution time, about two to 

three times as without, this was well worth it, to keep a greater part of the repetitive 

structures in the datasets used, the reasons they would be missing detailed in the 

background section, within the photogrammetry subsection. 

4.9.2 Model reconstruction 

Next, the two most popular Structure-From-Motion reconstruction pipelines are 

incremental and global. The incremental pipeline initialises the reconstruction by 

automatically selecting an image pair to start, usually the images with the highest 

number of matches with other images, and iteratively registering new image positions 

while refining their camera intrinsic and extrinsic parameters. On the other hand, the 

global reconstruction process considers and solves for all image positions 

simultaneously, unfortunately, this leads to global reconstruction not being as robust 

to the same amount of error as that of the incremental method. Additionally, global 

reconstruction tends to favour a dataset of images with a large amount of overlap. 

The incremental pipeline steps, to be more specific; initialisation from the most 

matched pair, incrementally registering images with their features and using the bundle 

adjustment algorithm to refine their positions and the camera parameters, have already 

been described in the “Structure-From-Motion” subsection of the “Reconstruction” 

section in the background. Instead, a flowchart of the incremental pipeline used for this 

project is provided, more specifically, the implementation the OpenMVG library uses, 

is shown in figure ten below, to provide a visual guide to the process. 
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Figure 10 Structure-From-Motion Incremental pipeline 

 

The OpenMVG library provides options for both methods, and thus both were tested 

for the Stonehenge reconstruction, only one reconstruction was used due to the 

computational requirements of said process. The results for the incremental pipeline 

are available in figure eleven, located below, while the results for the global pipeline 

are available in figure twelve, also located below.  
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Figure 11 Incremental Pipeline Results 

 

Figure 12 Global Pipeline Results 
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Figure 13 Photographic comparison to pipeline results 

 

Image taken from (Hawkes, 2019). 

As shown in figures eleven and twelve compared to the photographic reference in 

figure thirteen, the global pipeline did not manage to fully reconstruct the scene, the 

inner side of the circle’s façade left too sparse to be usage, the stone on the top left 

barely a shadow which might get mistaken for an error and the various smaller stones, 

in another inner circle, left missing entirely while still just a shadow on the incremental 

pipeline. The reasons this happens is outside of the scope of this dissertation. 

Additionally, the table four, located below, shows that despite looking cleaner, the 

global reconstruction is statistically worse, with a fewer number of matchable points, 

less registered images, a lesser number of tracks, that is, sequences of images at least 

two in length for the object motion estimation necessary in reconstruction and greater 

deviation from the model line of best fit. To that end, the incremental pipeline was 

chosen for the purposes of this project.  

Table 4 Comparison of incremental and global reconstruction pipelines 

Pipeline: Incremental: Global: 

Number registered images: 417 211 

Root Mean Squared Error: 0.581722 0.604633 
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Number of points: 210,328 40,757 points 

Number of tracks: 209,911 tracks 40,546 tracks 

 

The code for using this pipeline is included in appendix four under “incremental 

reconstruction”. 

4.9.3 Model geo-registration, localisation and merging 

The geo-registration method, alongside a reference to the relevant code snippet was 

already described in the section dealing with validating GPS data. 

The localisation method used was also a utility included by the OpenMVG package. 

This method’s implementation is a direct 2D-to-3D feature matching algorithm, leading 

to a lack of reliance on matches to the entire dataset of images and the localisation 

taking negligible time, especially compared to the initial 3D reconstruction. While this 

utility provides many options, the options used were the defaults. The relevant code 

snippet is available in appendix four under “localisation”. 

Finally, model merging functionality was achieved by usage of the georeferenced 

reconstructions JSON representations, writing some simple code to merge them into 

one file while updating their internal indexes with the values expected and read as valid 

by OpenMVG. The supporting files such as extracted features were copied over to a 

merge folder structure, fortunately, this method does not require the binary match files, 

or a list of pairs, simply the features. Then, the localisation images were also copied 

over, and localisation was executed using the new model. This works because the 

models are already geo-registered at this point, since superposition is not possible 

within the GPS datum assuming such static structures like buildings, they appear, 

inside the merged file, having the same distance as they would in the GPS datum in 

real life, depending on how accurate the initial geo-registration. The code for this is 

available in appendix four under “OpenMVG merging”. 

4.10 Analysis 

In combination with the manually inspected point clouds, as shown in figures three to 

nine, featuring fairly incomplete buildings, such as a missing façade or two, another 

problem with the dataset was highlighted, it is not extensive enough for the validation 

of this project, this was found out by working out that there simply are not enough 

images between certain views of facades to bridge the gap, join them together and 
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continue the reconstruction, assuming the images to continue the reconstruction exist 

in the first place, such as the case of the Notre-Dame Cathedral in Paris which has a 

façade that is not viewable by the general public. Additionally, they also showed a 

substantial amount of visual noise, extraneous floating points, also mentioned in table 

one. This was likely because only two views of a point were required for triangulation 

and could have been avoided had the requirement been set to three or more. The 

RMSE was not a reliable indicator of reconstruction quality but it was a good indicator 

for point cloud noise, described later, lower is better. 

Table two leads to another problem, some of the reconstructions have more than 

fifteen images to do geo-registration, this is a problem because only fifteen were copied 

over and any additional ones must have used different tags that slipped detection, even 

by a popular way of extracting them, those additional ones were not validated and may 

have negatively impacted the localisation capabilities. It was not investigated whether 

those undesirable images were included in the geo-registration process. 

Table three gives valuable information for the metrics of project success, and the 

viability of each reconstructed model being used for image localisation, that is, the 

average localisation error for good GPS images kept out of the reconstruction’s 

dataset, unfortunately, this does not give the entire story, since even one extremely 

localised image would nudge the value to great heights, however, the localisation 

errors plotted into N bins histogram, with N being the number of localised images, leads 

to a more complete picture. 

Looking at the histograms below, figure fourteen, the ranges of ‘x’ values and the lack 

of middle values in some while being that most predicted position errors are 

concentrated on or around the lowest value bins with little to no middle values, the 

preferred bins would cover the range between zero and a hundred metres. This is also 

well shown in figure fifteen where Stonehenge and Notre-Dame Cathedral dominate 

the first bin, followed by the Sagrada Familia albeit with its low number of images and 

then the other reconstructions have their respective, smaller pieces, showing that they 

can localise images with sufficient accuracy, in some cases. 
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Figure 14 Histograms of localisation accuracies 
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The data from the above histograms was also taken to construct a stacked histogram 

of the localisation values in each bin for all unmerged reconstructions. This was done 

for an easier comparison of accuracy ratings for each reconstruction. 

Figure 15 Reconstruction localisation accuracy histogram 

 

The extreme localisation outliers were also investigated manually, to see if they were 

improperly tagged in the first place, and if the reconstruction were not simply fixing their 

tags and showing that as a large error from the expected, for some, this was indeed 

true, and for some, it was simply localising them improperly, the allowed error option 

could and should have been altered for higher certainty, unfortunately, since no 

actually known ground truth dataset was used for testing, the prevalence of the 
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improper localisation problem versus the image tags actually being incorrect cannot 

be investigated, at least without manually tagging each image with some inaccuracy 

for the human error of manual localisation. 

4.10.1 Merged model to original localisation comparison 

The accuracies achieved with this method of merging reconstructions were 

investigated by the sum of errors, max, median, mean, and average, all in metres, for 

each localised good GPS tagged image or collection of images that make up a merged 

model, the pairs of reconstructions for merging each model was decided arbitrarily from 

the set of the ones not yet merged, the error is only calculated using the latitude and 

longitude values without altitude being considered, all values are rounded to three 

decimal places, the titles of the reconstructions are given as below for readability: 

Table 5 Merge model localisation changes 

Subject name: Sum Error Average Maximum Minimum Images 
localised 

Edinburgh Castle and St Giles 
Cathedral 

1322.749 69.618 289.46 4.808 19/23 

Above plus Stonehenge 1890.177 40.217 290/204 0.724 47/60 

Above plus Cathédrale Notre-
Dame de Paris 

1361473.193 17233.838 1359358.431 0.754 79/101 

Above plus Palace of 
Versailles 

319835.062 3075.337 249964.799 0.392 104/150 

Above plus Sagrada Familia 14395616.879 125179.277 13514639.934 0.586 115/166 

 

Table five shows that the change to localisation accuracy varies by the joined geo-

registered reconstructions and the localisation process, that is, assuming the 

localisation images did not get their features wrongly matched to the wrong 

reconstruction, the scenario not investigated is when reconstructions might be 

registered such that they overlay each other. That said, there were five missing images 

in the final merge localisation and a large amount of error in metres, as a sum, for the 

positions of many images. The former can be addressed by the fact that the pipeline 

used is not deterministic, the results do not necessarily have to be the same between 

reruns, it is possible that the images would have been localised had the localisation 

step been ran again, additionally, the positions gained by localisation are subject to 

change, once again due to the non-deterministic nature of the algorithm used for 

localisation. In the case of the final model, it resulted in some images being localised 

correctly despite the original models, and in some images having error added to their 

positions, and in some cases not found at all. To get more complete results, the 



   

   
  52 

process would have to be reran with better datasets containing a ground truth, multiple 

times, or a deterministic localisation method would need to be implemented. 

4.10.2 Comparison of merged model to ground truth  

In the final, every reconstruction merged model, the localisation accuracy changes as 

a result of the merge were investigated, this was done by checking whether all images 

originally localised were still there, how the predicted differences in the final merge 

differed from each images’ original model, and how much closer or further away they 

were from the original image’s actual GPS coordinates, the table for that is shown 

below, rounded to three decimal places: 

Table 6 Merged to original position changes. 

Final merged reconstruction: 

Number of images missing: 5 

Sum metres distance changes for each image: 1213.903  

Sum metres distance from actual change: 4.714 

Average metres distance from actual change: 0.043 

Average metres distance change: 11.035 

Maximum metres distance from actual change: 143.91 

Maximum metres distance change: 306.072 

Minimum metres distance from actual change: -257.168 

Minimum metres distance change: 0.001 

 

Table six, above, deals with the accuracy of the merged model in comparison to the 

GPS data ‘ground truth’ and the localised positions of each image in their original 

reconstruction. In essence, it shows that five of the originally successfully localised 

images are missing, that the final change sum for error from GPS positions increased 

by 4.714 metres, unexpected compared to the 1213.903 metres the image positions 

were moved. The benefit to this is that while some images gain a lot of error, as in the 

case of the biggest gain in error, 306.072 metre, some images manage to get localised 

much closer to their expected positions, getting closer by 257.168 metres. The average 

for changes in distance to actual GPS position suggest that the changes are negligible 

on the scale of multiple reconstructions, at 0.043 metre. On the other hand, the average 

move for an image position due to different localisation is 11.035 metres, highly 

unstable. Yet some images seem resistant to this change, the minimum change 

experienced in the position being 0.001 metres. It was not investigated whether this 

increases as more reconstructions are merged. An illustration of this average image 

position change is shown in figure sixteen below, the radius of a point representing 



   

   
  53 

how by how much each localised image would have their position moved on average 

(11.035 metres). 

Figure 16 Image localisation position uncertainty due to model merge 

 

4.10.3 Case study 

Finally, a small case study on what makes a good reconstruction for localisation, as in 

the case of the Big Ben Tower in London versus St Giles Cathedral in Edinburgh; the 

localisation error sum on them, in order was 2481.734 and 990.337 metres. While both 

were reconstructed to satisfaction, the average 3D fitting errors for both are 58.7415 

and 12.8532 respectively, both with nine inliers. This shows the high relative geo-

registration stability of the latter compared to the former, and coincidentally, the 

difference between a good and bad example, barring reconstruction quality and 

completeness, the accuracy and stability of geo-registration is the single determining 

factor, the former achieved with truly accurate GPS tagged images, and the latter with 

their quantity, due to the position voting process relying on the majority group being 

correct to reject outliers. In the case of the Big Ben tower, the dataset did not prove 

favourable due to the methods of gathering it, while in the case of St Giles Cathedral, 
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sufficiently accurate images happened to be used for the forty-unit smaller error on 

average. 

4.10.4 Conclusion of analysis 

The answer to whether this solution achieves its goal of being more accurate than 

simple GPS in urban environments, where GPS is supposed to do its worst, is that it 

depends, in the St Giles Cathedral example, manually checked for the extreme outliers 

and having said outlier images that looked localised properly not considered, led to a 

three decimal place rounded sum error of 194.924 metres, and an average of 21.658 

metres, it should also be noted that the geo-registration method 3D fitting error (in the 

target coordinate system of GPS) gave the following table: 

Table 7 3D fitting error for St Giles Cathedral 

3D Fitting Error for St Giles Cathedral: 

Minimum: 3.69096 

Mean: 12.8532 

Median: 12.7201 

Maximum: 19.7174 

 

Additionally, there were two images that were localised on the opposite side of the 

seemingly structurally mirrored building; the side they were localised on looked much 

the same, which suggests that there might be problems with reconstructing and 

matching to uniform structures, and this is supported by popular literature in the area, 

some examples include but are not limited to; (Saovana, Yabuki, & Fukuda, 2020), 

(Wilson & Snavely, 2013) and (Tao Xiang & Loong Fah Cheong, 2003), mainly dealing 

with epipolar geometry verification and deep learning based rejection of outside region 

of interest features.  

Next, there were images that looked perfectly localised in relation to the relative model 

but their ground truth or model geo-registration not quite right. This was shown in table 

six. This also leads to the conclusion that should the error have been adjusted for the 

improper geo-registration and a better ground truth dataset been used for validation, 

the accuracy would have likely been determined to be well above conventional GPS. 
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4.10.5 Difficulties 

In general, there were a few difficulties encountered; from lack of sufficient dataset 

gathering techniques resulting in faulty tags on assumed good GPS images, lack of 

computational power and no usage of truly scalable algorithms limiting the 

reconstructions to set number of images for reasonable run times and a lack of 

knowledge of Structure-From-Motion techniques. All of those could have contributed 

to the observed high error rates, and this project may in fact work perfectly well given 

a small change, alas, the project does not benefit from an experienced 

photogrammetrist and produces some results regardless. 
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5 Conclusion 

In conclusion, and in answer to the research question; “Is it possible for higher 

accuracy GPS image locations to be obtained from a georeferenced 3D reconstruction 

than by using on-board mobile phone GPS chips?” … the varies, depending on the 

reconstruction and the images that make it up, including the accuracy of the GPS tags 

of those images, best case scenarios of 0.636 metres and worst-case scenarios 

1403.129 metres for singular unmerged models, most images, for a good enough 

reconstruction, for the purposes of novel image localisation and its social media 

tagging applications, being under a hundred metres of accuracy and some fitting the 

majority under thirty or fifty depending on the geo-registration accuracy. That said, 

there are a fair few image localised at under ten metres of error, which is well under 

the twenty metres described by the studies on GPS accuracy in urban areas. On the 

other hand, merged models seem to suffer from images being localised at the wrong 

model location because of matching features and the non-deterministic nature of the 

algorithms for localisation, the same problem also occurs on a smaller scale in singular 

subject models. 

5.1 Strengths and weaknesses 

5.1.1 Strengths 

The previous work, described in a subsection of the background, does not seem to 

deal with individual targeted reconstructions and their dataset gathering while this 

project does, albeit in a rather simplistic manner, nevertheless, it did succeed at 

gathering targeted enough datasets for several reconstructions, for example 

Stonehenge and Edinburgh Castle. 

The localisation accuracies are investigated in easy to understand and visualise error 

metrics, namely, meters. The project also provides easy visualisation for the accuracy 

of a given geo-registered model, as well as its localised image positions in the form of 

a KML file for any compatible viewer. 

Although their accuracy was not investigated, the project also features localisation in 

the Z axis, altitude. Often left untouched and largely unmentioned in previous works. 

Given accurate georeferencing, this would allow one to guess at the floor and specific 
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room of a building from which an image was taken in urban environments, leading to 

applications of modelling wealth from the prices of given hotel rooms on the social 

media of various people. 

5.1.2 Weaknesses 

The method used for crawling and retrieving data from Flickr was overly simplistic, 

relying only on a user defined query for retrieving enough images for a reconstruction, 

not to mention the plain luck method of finding images to download with valid GPS tags 

written into EXIF instead of checking the Flickr tags for a location, additionally, as 

mentioned in one of the papers, Flickr implements an accuracy rating for locations 

attached to images, those could have been leveraged to weight the importance of the 

values provided for geo-registration, if they had been retrieved in the first place. 

The images retrieved were usually taken from the viewpoint of the most popular 

facades, in consequence, there were several subject features that were not properly 

reconstructed, or at all. This could have been remedied by a better image location 

searching technique as detailed above, and the use of OpenStreetMap Points-Of-

Interest around the subject which could have been appended onto the query and those 

images downloaded too. 

The algorithm used for model georeferencing was not suitably robust to erroneous 

invalid image GPS tags, methods for more accurate georeferencing from papers that 

dealt with that problem could have been sought and more robust outlier rejection could 

have been implemented. 

Merging models into one was a largely unnecessary task since the images could have 

just tried to have been localised into each model sequentially until their positions were 

found. This would have also reduced the problem of matching similar features from 

other models for erroneous positions as the reconstructions grew. 

The project used an older version of the reconstruction software, missing some critical 

fixes and improvements due to a curious way of naming software branches, and what 

was set as default, this made the project miss out on additional, more efficient image 

matching techniques and parallelism improvements that could have enabled the usage 

of a larger dataset. 
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Finally, the project suffers from non-deterministic behaviour, leading to localisation 

likely providing differing results on each run, sometimes, not all images get localised, 

and sometimes, they get localised in erroneous spots. Unfortunately, no popular 

techniques currently exist to alleviate this issue, one way of dealing with this problem 

might be running the localisation process multiple times and taking the mode (highest 

occurring value) of the estimated poses. 

5.2 Further work 

Many experiments have been left to do in the future, with more knowledge, time and 

computational power, there are a few things that could have been implemented, but 

were not, some of them listed below: 

- A better method for crawling through and retrieving datasets from Flickr, and 

possibly other platforms, should be implemented, ones that would find 

georeferenced images around the reconstruction subject as well as their 

accuracy rating. The image searching would also be augmented by the Points-

Of-Interest taken from the OpenStreetMap. 

- The localised image GPS positions would be exported back into the image tags, 

said images would then be useful for different reconstruction projects, as a 

viable speed up in the matching process due to only considering spatial 

neighbours. Alternatively, the localised, in-reconstruction poses could be used 

to further extend the structure. 

- The usage of video for reconstruction, to save computational power on camera 

intrinsic calculation and later georeferencing by using localisation on known 

GPS images and georeferencing using those. 

- The used of advanced, neural-network aided image clustering and matching 

techniques for quick pair list generation to speed up the matching pipeline and 

reject outliers that do not below to any well-defined cluster. 

- Investigating the use of more parallel Structure-From-Motion techniques, such 

as the OpenMVG Incremental Version Two, Global, or Distributed Structure-

From-Motion, for the purposes of quicker reconstructions given the available 

additional hardware. 

- The use of neural networks to estimate camera intrinsic parameters to decrease 

the time spent on reconstruction and parameter estimation by bundle 

adjustment techniques. 
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- Content Based Image Retrieval (CBIR) techniques using five or so reference 

query images for retrieval of a dense dataset to fill in the gaps. This would 

decrease the initial outlier count in the database to almost zero.  
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7 Appendices 

7.1 Appendix 1 Project Overview 

Initial Project Overview 

SOC10101 Honours Project (40 

Credits)                                                       

Title of Project: Non-deterministic approach to location tracking through landmark 

recognition 

Overview of Project Content and Milestones 

My project is to determine location from images, hopefully featuring popular landmarks, 

possibly with camera positions in GPS coordinates, with some fallback if there are no such 

landmarks present, like the ground type matched with satellite imagery or if the image 

contains EXIF data, correlating sunrise and sunset times for the timestamp contained. This 

would likely be done through a combination computer vision-aided feature extraction, 

matching (possibly using a deep learning solution for the extraction and matching) and 

photogrammetric reconstruction as well as simple scripting. A possible addition of OCR 

(Optical Character Recognition) for keywords or language recognition could be included. 

The project will be segmented into stages, with the first being ongoing: 

• Management of the project using popular project management software solutions 

including visualisations. 

• Research into similar solutions, possible solutions, and a literature review of what 

already exists for my project. 

• Development of my solution using my previous research, including gathering of any 

required materials.  

• Creation of my report, detailing my research, solution, results etc. 

In summary, The milestones for my project, including some information from the “Work to 

be undertaken” section, are: 

• Research feature extraction and matching using deep learning and conventional 

photogrammetric techniques, state-of-the-art and older if applicable. 

• Research ground type recognition techniques and find out a way to match it to satellite 

imagery (including any colour shifts that might arise as the optical instrumentation on 

different satellites might be different). Finally, research OCR from images to language 

recognition. 

• Gather a dataset of good enough quality for my solution, both for landmarks and any 

additional deep learning-based feature extraction, like ground type recognition. 
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• Validate that my solution works properly with proper and hopefully intuitive 

visualisation of results, a way of constructing a ground truth to validate the camera 

locations might also be necessary, possibly from images already containing GPS data. 

• Write up my report and any relevant research. 

The Main Deliverable(s): 

The deliverables for this project are: 

• A solution for detecting location data from photos. 

• A report detailing my process to the standard of undergraduate honours work. 

• A high-quality dataset of landmark images and another of multiple environmental 

features like images containing different soil types etc.  

The Target Audience for the Deliverable(s): 

I think the target audience for my project would be security professionals for the purpose of 

people tracking, law enforcement for the purposes of determining the location of crime scenes 

depicted in digital images, social media platforms or search engines for named entity 

recognition to do automated annotation and individual users interested in personal geotagging, 

finally, other researchers could use it as reference material for their own projects, it would 

serve as a good collection of links to relevant research on the subject topic. 

The Work to be Undertaken: 

I will have to research feature extraction using various convolutional neural networks, to find 

something that would be able to find the same object in two images regardless of distortion, 

occlusion or scaling and be able to compare the image against a large image database 

relatively quickly. Another way I could go about it would be photogrammetric techniques 

such as Scale-Invariant Feature Transform (SIFT) to extract features, and compare them with 

other SIFT features for other images, a certain threshold and it might make for a good enough 

object recognition method, as well as being linearly scalable with more images. It would also 

have to be efficient for adding a lot of new landmarks and be able to recognise points on 

repetitive structures like multiple domes, or a fence, properly. 

Another way for faster results is any possible Optical Character Recognition (OCR) in the 

scene, perhaps a road sign would help narrow down the location. Of course, the language on 

said road signs would help narrow down the country. One more, slightly expensive method of 

achieving an even more accurate location, would be through photo-triangulation, I could 

possibly tell where, relative to a highly popular landmark, a particular photograph might have 

been taken, with full coordinates and the direction the camera is pointing, but that would 

require quite a lot of data (some with location in the EXIF for model geo-registration). 

I will need to collect a reasonably large database of images, using reasonably open platforms 

or scraping web data, for example Flickr, Bing and DuckDuckGo or pre-existing collections 

such as the Google Landmark Dataset V2. The ideal dataset would have a good number of 

classes, preferably balanced in terms of number of examples per class and possess sufficient 

resolution with enough for any solution to extract its information. 
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Next, I will need to develop a way to visualise the results, hopefully in a rather intuitive way; 

a heatmap of probable locations overlaid on a map, or something like that. A simple Keyhole 

Markup Language (KML) file could be used if the location is narrowed down with sufficient 

accuracy.  

Then, I will verify my solution works by testing it using some percentage of data kept from 

the training set to ensure it isn’t just memorising answers, for the case of the deep learning 

model. Next, some non-set images will verify the model doesn’t show high confidence on 

things it knows nothing about either. Basically, I need to verify it shows expected, sane and 

correct results for most images. The camera location could be verified by running my solution 

without location data for some images that have it, and checking the provided ones in those 

images to my calculated ones via a top-down look through Google Earth using KML files. 

Finally, I will write-up my research, code, and techniques used with their results, advantages 

and disadvantages, including the reasoning behind why I went the way I did with my research. 

This will be in the form of a full academic report, with an abstract, introduction, method, 

results, discussion, conclusion, relevant references and appendices if necessary.  

Additional Information / Knowledge Required: 

• Computational photogrammetric techniques; specifically 3D reconstruction, feature 

extraction and matching as well as photo-triangulation. 

• Deep learning, with a focus on convolutional neural networks for feature extraction 

and recognition. 

• Optical character recognition, with a focus on road signs as opposed to documents. 

• Various computed data caching techniques, if I don’t want to waste time on repeating 

calculations. Possibly a memory database. 

Information Sources that Provide a Context for the Project: 

• Google Reverse Image Search does it in a comparatively “dumb” way, as in only 

checking the images against a large database, not doing any analysis of the actual 

images. 

• https://cloud.google.com/vision/ 

• Google Cloud Vision AI API, it analyses the image in some of the ways I want, object 

recognition from the image like saying it has buildings or a cathedral, it also tries to 

match popular landmarks to the image, and derives the possible location for these 

landmarks from what I assume to be Google Maps data. 

• Colmap, photogrammetry software with a good command line interface, free and with 

GPU acceleration that can do point cloud and dense reconstructions. 

(https://colmap.github.io/) 

The Importance of the Project: 

I think it’s an intelligent way to do image matching that hasn’t been done before in any large 

project, something that takes into account what’s actually in the image; signs, weather data, 

https://cloud.google.com/vision/
https://colmap.github.io/
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architecture, other features like whether it contains a certain type of building as well as what 

text might be contained within the image. 

It also tries to find out from which side of a popular landmark the photo might have been 

taken using photo-triangulation techniques from the photogrammetry field. Naturally, once 

that image is matched to existing data with some degree of certainty, it can be used to further 

refine the model, leading to even better accuracy over time.  

Some refinement to the algorithm and you can find which parts of the data are more reliable 

in matching a particular landmark with the most confidence, leading to optimisation 

improvements, an example might be out of the 500 or so images of a landmark, 200 of them 

usually show 70% certainty of the landmark being the same when compared with other 

images containing it, while the other 300 show >=90%, the 200 can then be replaced and 

refined to different, better images. 

Additional significance for the project is that it would be open-source, in contrast to the 

usually proprietary and paid APIs Google exposes for us mere mortals. This also lends some 

novelty to the project, considering I still haven’t found a free project using all the things that 

can be done with images beside just near-match finding using image hashing. 

The Key Challenge(s) to be Overcome: 

The main challenges I can anticipate is my lack of knowledge of the majority of the 

technologies required for this project, so I will have to research and read a lot of material to 

get up to speed. Even then, as I read any material I will need to learn the mathematics behind 

it at the same time, which will slow it down to near crawling speed especially since I haven’t 

internalised any of the math concepts either. Finally, the written concise mathematics 

language used in academic papers will pose the most challenges for me, since it is one I don’t 

have any training in. 

Another problem I can foresee is lack of computational power to complete everything within 

some reasonable time frame and fast storage to feed whatever computer I use in real-time. I 

already got a more powerful relatively up to current generation graphics card for training 

models using Tensorflow with CUDA acceleration but even then, some of the larger models 

are out of my reach due to memory limitations on said card. 

Finally, there may be time constraints as my time isn’t only dedicated to this project, but also 

various other modules and whatever work that entails simultaneously. This means that I may 

need to manage my time efficiently and disregard certain time-consuming paths I could go for 

the completion of my project. 
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7.2 Appendix 2 Second Formal Review Output 

SOC10101 Honours Project (40 Credits)                          

Week 9 Report 
 

Student Name:     Wiktor Kaczor 

Supervisor:   Sean McKeown 

Second Marker:   Petra Leimich 

Date of Meeting:   27/11/2020 

Can the student provide evidence of attending supervision meetings by means of 
project diary sheets or other equivalent mechanism? yes   

 If not, please comment on any reasons presented 

• Recorded meetings, regular meetings 

 

Please comment on the progress made so far 

 

• Not concerned about progress, lots of work done 

• Looks like lots of the practical work has been done 

• Student says it’s pretty much good to go as is 

• Need to work on the write-up/lit review 

 

 

 

Is the progress satisfactory? yes* 

Can the student articulate their aims and objectives? yes   

If yes then please comment on them, otherwise write down your suggestions. 

 

• Reconstruct positional representations and GPS of images based on point 
clouds 

• Map random pictures, such as Instagram, map to places in the world, locate 
where they were taken 

• OSINT / investigative use cases. 

• No landmark? No worries: 

• Heat map of potential location based on time of day, foliage, OCR, etc. 
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Does the student have a plan of work? yes   

If yes then please comment on that plan otherwise write down your suggestions. 

• No spreadsheet/chart yet, but  

• Petra: todo: 

• Evaluation, actual experiments 

• Writing, narrative, literature/citations 

• How to capture the points, how to write it up 

 

 

 

 

 

Does the student know how they are going to evaluate their work? yes  

If yes then please comment otherwise write down your suggestions. 

 

• Ground truth data 

• Use images which already have GPS tag and see if removal and 
reconstruction would re-place it correctly on the map 

• Measured using distance between 2 coordinate points. 

• There are also existing datasets to work with 

 

 

Any other recommendations as to the future direction of the project 

• Be clear in the project, and in the code, which parts are your contribution and 
which parts are re-used from other libraries/projects 

• Modifying code is somewhere in between 

• Multiple locations with same name – may be an issue, though project scope 
won’t take this into account. 

• More clearly define scope, so we can define what is in-scope and what is out 
of scope. 

• Introduction is too technical too fast -should have a higher-level introduction 
with motivation, examples of use case, etc. The kind of thing which is probably 
in the IPO already. 

• Check Acronyms for definitions on first use. Glossary? 

• CVG github is close to this but doesn’t handle GPS or positional data on 
maps. Position your work with respect to this -> enhancing the approach by 
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combining it with positional data. This should be in the lit review to make it 
clear that there is a gap. 

• For VIVA: 

• Prepare 5-10 minute show+tell to show off what the work actually does 
to show off practical work. 

• Recording something in advance would be ideal – can skip over 
processing times and focus on the main points, outcomes, contribution. 

 

 

 

 

 

Signatures:   Supervisor  Sean McKeown     

Second Marker        Petra Leimich 

Student  Wiktor Kaczor 

The student should submit a copy of this form to Moodle immediately after the review 
meeting; A copy should also appear as an appendix in the final dissertation. 
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7.3 Appendix 3 Diary Sheets (or other project management 

evidence) 

The project management plan for this dissertation was recording the supervision 

meetings as a way of keeping track of what I am doing each week, this was done to 

minimize the paperwork. In said weekly meetings, we discussed what was done during 

the week and what was to be done during the coming week as well as touching on the 

problems encountered, and their potential solutions. The recordings taken can be 

provided should anyone care to request them.  

Changes to the project code, on the other hand were tracked through the code version 

control system in the form of commit messages. The version control system used was 

Git and the cloud hosting provider was GitHub. The repository can also be provided at 

should anyone request them. 

Apart from all that, an initial project overview document served as the starting point 

and statement of objective for this project, it listed; what this project was meant to be, 

what it was meant to deliver, why it was important that it be completed, who would be 

the target audience for the project, some information sources as a context for the 

project and some of the problems that had to be managed for the success of the 

project. This is available in Appendix 1. 

Finally, the last piece of paperwork was the Second Formal Review Output, where the 

second marker, available in Appendix 2, assessed my work until week nine of the 

project, provided helpful thoughts and suggestions, and essentially gave the go ahead 

to the project being on track for academic requirements. 
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7.4 Appendix 4 Relevant code 

7.4.1 Download 
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7.4.2 Conversion 
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7.4.3 Visual checking 
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7.4.4 Moving images 
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7.4.5 GPS sanity check 
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7.4.6 Geo-registration 
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7.4.7 Feature extraction and matching 
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7.4.8 Incremental reconstruction 
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7.4.9 Localisation 
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7.4.10 OpenMVG Merging 

 


